Patient Safety Support Service & Medication Safety Support Service Workshop

Failure Modes and Effects Analysis

Supported by the Ontario Ministry of Health and Long Term Care
Please silence your communication leashes
Objectives – FMEA Session

- To introduce the OHA Patient Safety Support Service and ISMP Canada Medication Safety Support Service
- To Describe the origin and utility of FMEA
- To Involve participants in an abbreviated FMEA
ISMP CANADA Vision

- Independent nonprofit Canadian organization
- Established for:
 - the collection and analysis of medication error reports and
 - the development of recommendations for the enhancement of patient safety.
- Serves as a national resource for promoting safe medication practices throughout the health care community in Canada.
ISMP Canada Programs

- CMIRPS (Canadian Medication Incident Reporting and Prevention System)
 - 3 partners:
 - ISMP Canada,
 - Canadian Institute for Health Information (CIHI)
 - Health Canada
ISMP Canada Programs

- Medication Safety Support Service
 - Concentrated Potassium Chloride
 - Opioids (narcotics)

- Analyze-ERR

Medication Safety Self-Assessment (MSSA)
Outline

- Introduction
- Brief Overview of Human Factors
- Overview of the Origins of FMEA
- FMEA steps
- Practice Sessions
- Discussion and Wrap Up
Human Factors Engineering 101

HFE: A discipline concerned with design of systems, tools, processes, machines that take into account human capabilities, limitations, and characteristics.

HFE = Ergonomics = usability

Engineering = user centered design
Human Factors Engineering Principles

- Simplify key processes
- Standardize work processes
- Improve verbal communication
- Create a learning environment
- Promote effective team functioning
- Anticipate that humans make errors
Human Factors – Guiding Principle

Fit the task or tool to the human, not the other way around.
FMEA definition

• FMEA is a team-based systematic and proactive approach for identifying the ways that a process or design can fail, why it might fail, the effects of that failure and how it can be made safer.

• FMEA focuses on how and when a system will fail, not IF it will fail.
Why me? Why you?

- Practitioners in the systems know the vulnerabilities and failure points.
- Professional and moral obligation to “first do no harm”
- Increased expectation that we create safe systems.
FMEA Origins

- FMEA in use more than 40 years beginning in aerospace in the 1960s
- 1970s and 1980s used in other fields such as nuclear power, aviation, chemical, electronics and food processing fields (High Reliability Organizations)
- Automotive industry requires it from suppliers, reducing the after-the-fact corrective actions
FMEA is a tool to:

- Analyze a process to see where it is likely to fail.
- See how changes you are considering might affect the safety of the process.
JCAHO Position

- JCAHO’s safety standards now includes requirements for the prospective analysis and redesign of systems identified as having the potential to contribute to the occurrence of a sentinel event (FMEA)

- JCAHO expects healthcare facilities to set FMEA priorities based on their own risk management experiences or external sources
CCHSA Patient Safety Goals

Carry out one patient safety-related prospective analysis process per year (e.g. FMEA), and implement appropriate improvements / changes.
FMEA versus RCA - when to use

FMEA = Future (preventative)

RCA = Retrospective (after the event or close call)
FMEA Steps

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Select process and assemble the team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Diagram the process</td>
</tr>
<tr>
<td>Step 3</td>
<td>Brainstorm potential failure modes and determine their effects</td>
</tr>
<tr>
<td>Step 4</td>
<td>Identify the causes of failure modes</td>
</tr>
<tr>
<td>Step 5</td>
<td>Prioritize failure modes</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Step 6</td>
<td>Redesign the processes</td>
</tr>
<tr>
<td>Step 7</td>
<td>Analyze and test the changes</td>
</tr>
<tr>
<td>Step 8</td>
<td>Implement and monitor the redesigned processes</td>
</tr>
</tbody>
</table>
FMEA Process Steps - 1

1. Select a high risk process & assemble the team
2. Step 2
3. Step 3
Select a high-risk process

- Internal data – aggregate data, significant individual events
- Sentinel Events
- CCHSA Patient Safety Goals
- ISMP Canada
- Executive buy-in

Select processes with high potential for having an adverse impact on the safety of individuals served.
High Risk Processes - Definition

Those processes in which a failure of some type is most likely to jeopardize the safety of the individuals served by the health care organization. Such process failures may result in a sentinel event.
High Risk Processes - Examples

- Medication Use
- Operative and other procedures
- Blood use and blood components
- Restraints
- Seclusion
- Care provided to high-risk population
- Emergency or resuscitation care
Typical FMEA topics in Health Care

- Blood administration
- Admission / discharge / transfer processes
- Patient Identification
- Outpatient Pharmacy Dispensing
- Allergy Information Processing
- Specimen Collection
Typical Medication Use FMEAs

• Narcotic use
• Anticoagulation
• Insulin or other diabetes drug use
• Chemotherapy processing
• Parenteral Electrolyte use
• Neonatal or pediatric drug use

It is no coincidence that many are high alert drug use processes
Assemble a team

- Leader
- Facilitator
- Scribe / Recorder
- Process experts
 - Include all areas involved in the process
- “Outsider” / Naïve person
- 6-10 optimal number
FMEA Process Steps - 2

Step 1
Select a high risk process & assemble the team

Step 2
Diagram the Process
Handy Hints:

- Pick a manageable portion of the process
- Make sure the topic is narrow enough of a focus (don’t try to cure world hunger)
- FMEA should focus on larger high profile, safety critical areas
 - Resource intense to analyze and fix
 - Can apply methodology on other projects without a super team
Diagram (flow chart) the process

- Define beginning and end of process under analysis
- Chart the process as it is normally done
- Using the collective process knowledge of the team, a flow chart is sketched.
Why diagram the process?

- Diagrams clarify things between members
- Narrows the topic – goes from broad topic
e.g. narcotic use process to narrow topic
e.g. morphine removed from narcotic drawer
Narcotic Drug Use Process
Diagram Basic Steps

1. Receive drugs from Pharmacy vendor
2. Check drugs into pharmacy
3. Dispense to patient care area
4. Remove from stock one dose at a time as patients request medication
5. Administer drug to patient
6. Document drug administration and record waste
Narcotic Drug Use Process

Number Basic Steps

1. Receive drugs from Pharmacy vendor
2. Check drugs into pharmacy
3. Dispense to patient care area
4. Remove from stock one dose at a time as patients request medication
5. Administer drug to patient
6. Document drug administration and record waste
Narcotic Drug Use Process
Select One Portion of Process at a Time to Diagram

1. Receive drugs from Pharmacy vendor
2. Check drugs into pharmacy
3. Dispense to patient care area
4. Remove from stock one dose at a time as patients request medication
5. Administer drug to patient
6. Document drug administration and record waste
Narcotic Drug Use Process
Diagram the Sub-Process Steps

Receive request from Patient Care Area

Technician pulls drug from Narcotic vault / cabinet

Pharmacist checks drug against request

Narcotic and request set out to be checked

Technician assembles drugs

Technician hand carries to the Patient Care Area
Narcotic Drug Use Process
Number the Sub-Process Steps

3A: Receive request from Patient Care Area

3B: Technician pulls drug from Narcotic vault / cabinet

3C: Narcotic and request set out to be checked

3D: Pharmacist checks drug against request

3E: Technician assembles drugs

3F: Technician hand carries to the Patient Care Area
Notes about Diagramming

• Once the diagramming is done, the team may realize that the topic is TOO LARGE.

• The team may want to re-define the topic to a more manageable portion of the subject, but the larger diagram will be useful to “see” the interrelation between different parts of the process.

• It is not uncommon for the diagrams to be more complex and branched than in our examples here (organization is the key).
Narcotic Drug Use Process

Brainstorm Failure Modes

3A
Receive request from Patient Care Area
- Request never received
- Pharmacy is closed
- Request is blank

3B
Technician pulls drug from Narcotic vault / cabinet
- Technician pulls wrong drug
- Technician doesn't pull drug
- Technician pulls wrong quantity

3C
Narcotic and request set out to be checked
- Technician forgets to set out on counter
- Drug diverted while sitting out on counter
- Drug slips off the counter or falls through crack

3D
Pharmacist checks drug against request
- Pharmacist doesn't check
- Pharmacist checks only part of request
- Pharmacist checks inaccurately

3E
Technician assembles drug(s)
- Technician grabs partial
- Technician grabs order for closed unit
- Technician mixes up drugs and requests

3F
Technician hand carries to the Patient Care Area
- Technician drops drug or request
- Technician hijacked on way to patient care area
- Technician mixes up drugs and requests

Process Steps

Potential Failure Modes
Narcotic Drug Use Process

Number Failure Modes

3A
Receive request from Patient Care Area

1. Request never received
2. Pharmacy is closed
3. Request is blank

3B
Technician pulls drug from Narcotic vault/cabinet

1. Technician pulls wrong drug
2. Technician doesn't pull drug
3. Technician pulls wrong quantity

3C
Narcotic and request set out to be checked

1. Technician forgets to set out on counter
2. Drug diverted while sitting out on counter
3. Drug slips off the counter or falls through crack

3D
Pharmacist checks drug against request

1. Pharmacist doesn't check
2. Pharmacist checks only part of request
3. Pharmacist checks inaccurately

3E
Technician assembles drug(s)

1. Technician grabs partial
2. Technician grabs order for closed unit
3. Technician mixes up drugs and requests

3F
Technician hand carries to the Patient Care Area

1. Technician drops drug or request
2. Technician hijacked on way to patient care area
3. Technician mixes up drugs and requests

Process Steps

Potential Failure Modes
FMEA Process Steps - 3

Step 1: Select a high risk process & assemble the team

Step 2: Diagram the Process

Step 3: Brainstorm Potential Failure Modes
Brainstorm potential failure modes

1. People
2. Materials
3. Equipment
4. Methods
5. Environment

Failure modes answer the **WHAT** could go wrong question
Handy Hints

- Failure Modes are the WHATs that could go wrong
- **Failure Mode Causes are the “WHY”s**
 - May be more than one cause for each failure
FMEA Process Steps - 4

Step 1: Select a high risk process & assemble the team

Step 2: Diagram the process

Step 3: Brainstorm Potential Failure Modes

Step 4: Identify Causes of Failure Modes
Identify root causes of failure modes

- Focus on systems & processes, not individuals
- Asks why?, not who?
- Prospective application of RCA
- Critical to identify all root causes and their interactions
Practice Session ONE

- For your sub-process brainstorm the potential failure modes of at least one step
- Finish one process step before moving on to the next process step
 - Use sticky notes for failure modes
- Next brainstorm the causes of the failure modes
 - Use different coloured sticky notes for the causes
- Be ready to de-brief the results to the other groups
Transfer the Failure Modes from the diagram to the spreadsheet

Hint: be careful to keep the numbering!
Transfer Failure Modes on to Spreadsheet

<table>
<thead>
<tr>
<th>Failure Mode Number</th>
<th>Potential Failure Mode Description</th>
<th>Single Point Weakness?</th>
<th>Potential Cause(s) of Failure</th>
<th>Potential Effect(s) of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Technician pulls wrong drug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Technician doesn’t pull drug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Technician pulls wrong quantity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Single Point Weakness

• A step so critical that it’s failure will result in a system failure or adverse event
• Single point weaknesses and existing control measures “modify” the scoring
 ➢ Single point weaknesses should all be acted upon
 ➢ IF effective control measures are in place, it would cancel the need to take further action (risk is mitigated)
Evaluate if the failure modes are single point weaknesses

<table>
<thead>
<tr>
<th>Failure Mode Number</th>
<th>Potential Failure Mode Description</th>
<th>Single Point Weakness?</th>
<th>Potential Cause(s) of Failure</th>
<th>Potential Effect(s) of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Technician pulls wrong drug</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Technician doesn’t pull drug</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Technician pulls wrong quantity</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single Point Weakness: A step so critical that it’s failure will result in a system failure or adverse event
Evaluate the CAUSE(S) of the failure

| Process Step Number: 3 B Technician pulls drug from Narcotic vault / cabinet |
|---------------------------|--|
| **Failure Mode Number** | **Potential Failure Mode Description** | **Single Point Weakness** | **Potential Cause(s) of Failure** | **Potential Effect(s) of Failure** |
| 1 | Technician pulls wrong drug | N | Look alike packaging | Storage location too proximal |
| 2 | Technician doesn’t pull drug | N | Form is hand written and not very legible | Technician is distracted |
| 3 | Technician pulls wrong quantity | N | packages are in random order | |
Effects of the Failure Modes

• Review each failure mode and identify the effects of the failure should it occur
• May be 1 effect or > 1
• Must be thorough because it feeds into the risk rating
• If failure occurs, then what are the consequences
Evaluate the EFFECT(S) of the failure

<table>
<thead>
<tr>
<th>Failure Mode Number</th>
<th>Potential Failure Mode Description</th>
<th>Single Point Weakness?</th>
<th>Potential Cause(s) of Failure</th>
<th>Potential Effect(s) of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Technician pulls wrong drug</td>
<td>N</td>
<td>Look alike packaging</td>
<td>Patient receives wrong drug</td>
</tr>
<tr>
<td>2</td>
<td>Technician doesn’t pull drug</td>
<td>N</td>
<td>Storage location too proximal</td>
<td>Nursing unit runs out of drug</td>
</tr>
<tr>
<td>3</td>
<td>Technician pulls wrong quantity</td>
<td>N</td>
<td>Form is hand written and not very legible</td>
<td>Nursing unit is over or under stocked</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technician is distracted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>packages are in random order</td>
<td></td>
</tr>
</tbody>
</table>
Step 1: Select a high risk process & assemble the team

Step 2: Diagram the process

Step 3: Brainstorm Potential Failure Modes

Step 4: Identify Causes of Failure Modes

Step 5: Brainstorm Effects & Prioritize Failure Modes
Calculate RPN
Prioritize failure modes

- Score **frequency** of failure mode
- Score **detectability** of failure prior to the impact of the effect being realized
- Score **severity** of effect of failure mode
Frequency

- Also known as occurrence – it is the likelihood or number of times a specific failure (mode) could occur

<table>
<thead>
<tr>
<th>Frequency Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yearly</td>
<td>1</td>
</tr>
<tr>
<td>Monthly</td>
<td>2</td>
</tr>
<tr>
<td>Weekly</td>
<td>3</td>
</tr>
<tr>
<td>Daily</td>
<td>4</td>
</tr>
<tr>
<td>Hourly</td>
<td>5</td>
</tr>
</tbody>
</table>
Detectability

The likelihood of detecting a failure or the effect of a failure BEFORE it occurs

<table>
<thead>
<tr>
<th>Detectability Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always</td>
<td>1</td>
</tr>
<tr>
<td>Likely</td>
<td>2</td>
</tr>
<tr>
<td>Unlikely</td>
<td>3</td>
</tr>
<tr>
<td>Never</td>
<td>4</td>
</tr>
</tbody>
</table>

Many events are detectable or obvious after they occur but that is not a FMEA detectable event by definition.
Examples of Detectability

• Break away locks
• Emergency drug boxes with pop up pin
• Ampoules
• Low battery alarm
Severity

The seriousness and severity of the effect (to the process or system or patient) of a failure if it should occur.

<table>
<thead>
<tr>
<th>Severity Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No effect</td>
<td>1</td>
</tr>
<tr>
<td>Slight</td>
<td>2</td>
</tr>
<tr>
<td>Moderate</td>
<td>3</td>
</tr>
<tr>
<td>Major</td>
<td>4</td>
</tr>
<tr>
<td>Severe / Catastrophic</td>
<td>5</td>
</tr>
</tbody>
</table>

Score based upon a “reasonable worst case scenario”
If severity = 5 ... always address it

e.g. Potassium Chloride (KCl)

The severity = 5 but the frequency = 1
Calculate the Risk Priority Number

- Determine the impact of the failure on the patient or the system using the severity, frequency and detectability parameters
- Multiply three scores to obtain a Risk Priority Number (RPN) or Criticality Index (CI)
- Also assign priority to those with a high severity score even though the RPN may be relatively low

\[
\text{RPN} = \text{Severity} \times \text{Frequency} \times \text{Detectability}
\]
Handy Hints

✓ Use group discussion and the expertise of the team members

✓ Since ratings are multiplied, one or two points can have a significant impact on RPN. Don’t agree just to keep the process going

✓ Talk things out

✓ If no consensus is reached, the team should use the higher rating. (better to have more work than to miss a severe failure mode)

✓ Use a “reasonable worst case” scenario
1. Brainstorm potential failure effects

2. Assign a number to:
 - Frequency,
 - Detectability
 - Severity,

3. Determine the RPN number for the failures you identified
 - Use the flipchart or form
 - Be prepared to debrief
RPN

- **FREQUENCY** → 1 ~ Yearly, 5 ~ Hourly
- **DETECTABILITY** → 1 ~ Always, 4 ~ Never
- **SEVERITY** → 1 ~ No Effect, 5 ~ Severe
FMEA Subject: Narcotic Drug Distribution

Process Step Description:
Assess current controls, determine the impact of the failure and prioritize them.

<table>
<thead>
<tr>
<th>Failure Mode Number</th>
<th>Potential Failure Mode Description</th>
<th>Single Point Weakness</th>
<th>Potential Effect(s) of Failure</th>
<th>Potential Cause(s) of Failure</th>
<th>Effective Control Measure in Place</th>
<th>Severity</th>
<th>Frequency</th>
<th>Detection</th>
<th>Action / Date OR reason for not acting</th>
<th>Who is responsible?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Technician pulls wrong drug</td>
<td>N</td>
<td>patient receives wrong drug</td>
<td>Look alike packaging</td>
<td>N</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>Technician doesn’t pull drug</td>
<td>N</td>
<td>nursing unit runs out of drug</td>
<td>Storage location too proximal</td>
<td>N</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>Technician pulls wrong quantity</td>
<td>N</td>
<td>over or under stocked</td>
<td>technician is distracted</td>
<td>N</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>Technician pulls wrong quantity</td>
<td>N</td>
<td>over or under stocked</td>
<td>packages are in random order</td>
<td>N</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

In a real FMEA, a spreadsheet can be sorted in numerical order by RPN.
Step 1: Select a high risk process & assemble the team

Step 2: Diagram the process

Step 3: Brainstorm Potential Failure Modes

Step 4: Identify Causes of Failure Modes

Step 5: Brainstorm Effects & Prioritize Failure Modes

Step 6: Redesign The Process
Redesign the process

• Apply strategies to decrease frequency, decrease severity, or increase detection

• **Goal:** prevent harm to the patient

• Simplification, automation, standardization, fail-safe mechanisms, forcing functions, redundancy
Evaluating Redesign Options

• Don’t just pick training and policy development. They are basic actions but not very strong or long lasting.

• Go for the permanent fixes when possible.

• Elimination of the step or the function is a very strong action.

• Most actions are really controls on the system.

• Sometimes your team might have to accept some of the failure modes as “un-fixable”.

Three ways to improve safety

Safety for Dummies

Increase Detectability

Decrease Frequency
Reduce Severity
HFE Strength of possible actions

- Use stronger actions where possible
 - Physical and architectural over policy and training
 - Check lists, forcing functions
 - Standardization, simplification
 - Cognitive aids, usability testing
FMEA Subject: Narcotic Drug Distribution

Process Step Description:
Technician pulls drug from Narcotic vault / cabinet

<table>
<thead>
<tr>
<th>Failure Mode Number</th>
<th>Potential Failure Mode Description</th>
<th>Single Point Weakness?</th>
<th>Potential Effect(s) of Failure</th>
<th>Potential Cause(s) of Failure</th>
<th>Effective Control Measure in Place</th>
<th>Severity</th>
<th>Frequency</th>
<th>Detection</th>
<th>RPN</th>
<th>Action / Date OR reason for not acting</th>
<th>Who is responsible?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Technician pulls wrong drug</td>
<td>N</td>
<td>patient receives wrong drug</td>
<td>Look alike packaging</td>
<td>N</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>As above</td>
<td>CS Pharmacist</td>
</tr>
<tr>
<td>2</td>
<td>Technician doesn’t pull drug</td>
<td>N</td>
<td>nursing unit runs out of drug</td>
<td>Storage location too proximal</td>
<td>N</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>Implement pre-printed par level order form by 7/31/04</td>
<td>CS Pharmacist</td>
</tr>
<tr>
<td>3</td>
<td>Technician pulls wrong quantity</td>
<td>N</td>
<td>nursing unit is over or under stocked</td>
<td>Packages are in random order</td>
<td>N</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>Implement balance sheet (order lines = dispense lines) by 7/31/04</td>
<td>CS Pharmacist</td>
</tr>
<tr>
<td>4</td>
<td>Technician pulls wrong quantity</td>
<td>N</td>
<td>nursing unit is over or under stocked</td>
<td>Packages are in random order</td>
<td>N</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>will solve this (ordering in standard quant)</td>
<td>CS Pharmacist</td>
</tr>
</tbody>
</table>
FMEA Process Steps - 7

Step 1: Select a high risk process & assemble the team

Step 2: Diagram the process

Step 3: Brainstorm Potential Failure Modes

Step 4: Identify Causes of Failure Modes

Step 5: Brainstorm Effects & Prioritize Failure Modes

Step 6: Redesign The Process

Step 7: Analyze & Test the Changes
Practice Session –THREE

• For the highest RPN’s identified, brainstorm actions for change

• Use high leverage strategies as much as possible

• Identify responsibility for action
Analyze and test the changes

- Conduct FMEA of re-designed process
- Use simulation testing whenever possible
- Conduct pilot testing in one area or one section
FME EA Process Steps - 8

Step 1: Select a high risk process & assemble the team

Step 2: Diagram the process

Step 3: Brainstorm Potential Failure Modes

Step 4: Identify Causes of Failure Modes

Step 5: Brainstorm Effects & Prioritize Failure Modes

Step 6: Redesign The Process

Step 7: Analyze & Test the Changes

Step 8: Implement & Monitor the Redesigned Processes
Implement and monitor the redesigned process

- Communicate reasons for process changes
- Find change agents
- Define process and outcome measures
- Share results
- Monitor over time
Tips (gold nuggets)

- Start small and get success early on
- Narrow Narrow Narrow
- Can use different team members from the same department for different parts of the process (substitution of team players) versus RCA not able to do that
Beware of Stagnation

- Reasons FMEA projects might stagnate:
 - We have never done it that way
 - We are not ready for that yet
 - We are doing all right without it
 - We tried it once and it did not work
 - It costs too much
 - That is not our responsibility
 - It would not work around here anyway
Gains using FMEA

- Safety minded culture
- Proactive problem resolution
- Robust systems
- Fault tolerant systems
- Lower waste and higher quality
‘Emphasis on prevention may reduce risk of harm to both patients and staff.’

Failure Modes and Effects Analysis (FMEA), IHI and Quality Health Care.org, 2003
References

• McDermott - The Basics of FMEA
• Stamatis – Failure Mode Effect Analysis: FMEA from Theory to Execution (2nd ed)
• JCAHO – Failure Mode and Effects Analysis in Health Care. Proactive Risk Reduction
• Manasse, Thompson (Lin, Burkhardt) - Logical Application of Human Factors In Process and Equipment Design (in press).