Example of a Higher Level, Hardware-based FMEA

Machine/Process: Onboard compressed air system
Subject: 1.2 Compressor subsystem
Description: Equipment used to compress the intake air to 100 psig (including the compressor and its control loop, the discharge relief valve, and associated piping).

Next higher level: 1. Compression system

<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>Effects</th>
<th>Causes</th>
<th>Indications</th>
<th>Safeguards</th>
<th>Recommendations/Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Local</td>
<td>Higher Level</td>
<td>End</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Fails to provide air at 100 psig | No air pressure and the compressor not operating | Interruption of the systems supported by compressed air | Compressor control loop – no start signal when the system pressure is low
Compressor – fails to operate
Relief valve – spuriously opens
Piping – leak/rupture | Low pressure indicated on the air receiver pressure gauge | Rapid detection because of quick interruption of the supported systems | Consider a redundant compressor (diesel powered) with separate controls
Calibrate sensors annually
Replace the relief valve annually |

| | | | | | |